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Dear Neal:

Enclosed 1s my final report for the latest grant I held with the Air Force Office of Setentific
Research. I am sorry to be somewhat late. but | had some health problems last month s
because this quarter had a heavy teaching load. I couldn’t quite get to the report as fast s |
had wished for. Thanks for being patient.
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DESCRIPTION OF THE RESULTS

In summary. | have authored or co-authored 9 papers. while two students have been working

on their dissertations {ocecasionally supported as R.AVs under this granty,

Numerical procedures for stochastic programming problems. ['he aggregation principle
in stochastic optimization was exploited in "Scenarnios and policy aggresation in optimization un
der uncertainty” { Mathematics of Operations Keseareh, 16119911, 119- 117 to build an algonr b
procedure. known as the progressive hedging (PH) algorithm, for solving stochastic optimizatiog
problems. This method has received a number of experimental implementations and s starting
to be relatively well understood. In [6] a dual strategy for the implementation of the aggrecation
principle is proposed. Bradford’s dissertation {12] i3 mostly devoted to the questions raised by
the implementation of the PH algorithm on machines with single or parallel processors. The
analvsis is both theoretical and numerical. In particular. ke is able to obtain very sharp bounds
on the optimal setting of the key parameters of the algorithm. Numerical experimentation with
small to medium size problems confirms that a good choice of these parameters will result in
significant speed up of the performance of the algorithm.

Dong [13] wrote subroutines that would facilitate the manipulation and machine feeding of
the data associated with the formulation of a stochastic optimization problem.

[n addition to solutions tools. it is useful for the modeler of a stochastic optimization problem
to have at its disposal a number of numerical routines that would allow him to check if his probiem
is well-formulated. Because stochastic programming problems can he quite complex, modeling
errors are potentially much more difficult to detect. Preprocessing toois that would identify
infeasibilities, unboundedness. and the contribution of randoinness. are developed for stochastic
linear programs in [7]. and further specialized to the case of problems whose recourse process can
he formulated as capacitated network problems in [8]. These articles also report about the use
of these techniques to analyze a number of stochastic programs found in the literature, and it is
demonstrated that quite a bit of insight could be gained from their use. To obtain an efficient way
of describing feasibility in capacitated network flow problems [8], there was a need to improve on
the characterization of feasibility provided by the Gale-Hoffman inequalities. this led to [9] that
proposes a very efficient (and elegant) procedure for eliminating the redundant inequalities.

Approximations for stochastic problems. Under this title, I shall review mainly applications
of epi-convergence in a stochastic setting, in particular in the design of approximation schemes
for stochastic optimization problems. to some estimation problems in mathematical statistics,
and in stochastic homogenization.

The overall strategy for solving a stochistic optimization problem is to replace a given
problem by a simpler one, often obtained by approximating the probability measure that governs
the distribution of the random quantities. The approximating probability measure is nznally
obtained by some precise discretization scheme (usnally requiring the calculation of conditional




expectations) or by sampling. I[n both cases. one is faced with the question of knowing if the
resulting problem will actually furnish an approximate solution.

When proceeding by discretizatior. one is confronted with the following question: wivern o
random variable £ with values in = and probability distribution P, an integrand f = x V' -+ iR,
and a sequence of integrands and probability measures {{(f¥. Y v € IN} converging in sone

sepse to (f. P). what can be said about the convergence of the funcrionals

(E*F)(2) ::/

JAE VP IdE) to (Ef{e):= / fiéori PlidEy.

Qur interest in epi-convergence comes from the need to claim that the minimizers of the Tune
tionals £¥ f converge to those of £ f. Articles [1] and [2] deal with this question. In the first ane
1], the function f is fixed (doesn’t depend on v) with dom f(£. ) constant. The fact that weakly
convergent measures PY — P converge uniformiy on certain classes of sets is used to obtain
the epi- and pointwise convergence of the integral functionals E¥f to £f. The result is then
applied to approximation schemes for deterministic and stochastic control problems. Although,
this theorem imnproved on those previously known. it was still somewhat less than totally satis
factory. On one hand. we were getting more than desired (epi and pointwise convergencei, and
on the other hand, the assumption of constant domain was certainly less than wished for. The
results of the next paper (2] no longer suffers from these shortcomings. and in addition allows
for the dependence of f on v. A new notion of convergence for integrands is proposed. There
are no assumptions about the continuity of f with respect to £ and this opens up a new range
of potential applications. Stochastic optimization problems with discontinuous cost functions ia
simple inventory example is analyzed iu {2]). control of discrete events systems and stochastic
integer programs involve integrands that are only exceptionally continuous in £.

The substitution of the given probability measure by an empirical measure generated by
a sample is justified by the law of large numbers for random lIsc functions proved in [3]. It is
shown that if { f* : = — fens(.X).r € IN} is a sequence of epi-iid random lsc functions. then
e-lim,(1/v) Yo7 f* = Ef! alinost surely (fens( ) is the space of Isc functions defined on X). The
result is proved [I] when X is finite dimensional.

The relationship between stochastic optimization and mathematical statistics is pursued
in (4] and [3]. In [4]. it is shown that the consistency of parametric or nonparametric estima-
tors, even when there are constraints on the choice of the estimator. can be derived from the
a.s.-convergence of the solutions of stochastic optimization problems described above. The rela-
tionship between the asymptotic results for statistical estimators and those for the solutions of
stochastic optimization problems is also reviewed.

A standard approach to deriving the consistency of estimators relies on the almost sure
uniform convergence of the empirical measures on certain classes of subsets of A (the o-field of
events). By introducing a certain topology. eventually called the rough topology. on the subspace
of closed sets in A, a criterion is given in [3] that can be used to check if a.s.-uniform convergence
of the empirical measures will actnally hold for any given class of sets. One of the implications
of [5] is that we now know thet a.s.-uniform convergence of the empirical measurss holds for a
much richer class of sets than those identified up to now.




